Volume of Geodesic Balls in Finsler Manifolds of Hyperbolic Type
نویسندگان
چکیده
منابع مشابه
Commensurability of hyperbolic manifolds with geodesic boundary
Suppose n > 3, let M1,M2 be n-dimensional connected complete finitevolume hyperbolic manifolds with non-empty geodesic boundary, and suppose that π1(M1) is quasi-isometric to π1(M2) (with respect to the word metric). Also suppose that if n = 3, then ∂M1 and ∂M2 are compact. We show that M1 is commensurable with M2. Moreover, we show that there exist homotopically equivalent hyperbolic 3-manifol...
متن کاملGeodesic planes in hyperbolic 3-manifolds
In this talk we discuss the possible closures of geodesic planes in a hyperbolic 3-manifold M. When M has finite volume Shah and Ratner (independently) showed that a very strong rigidity phenomenon holds, and in particular such closures are always properly immersed submanifolds of M with finite area. Manifolds with infinite volume, however, are far less understood and are the main subject of th...
متن کاملGeodesic Intersections in Arithmetic Hyperbolic 3-manifolds
It was shown by Chinburg and Reid that there exist closed hyperbolic 3-manifolds in which all closed geodesics are simple. Subsequently, Basmajian and Wolpert showed that almost all quasi-Fuchsian 3-manifolds have all closed geodesics simple and disjoint. The natural conjecture arose that the Chinburg-Reid examples also had disjoint geodesics. Here we show that this conjecture is both almost tr...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملHyperbolic Manifolds of Small Volume
We conjecture that for every dimension n 6=3 there exists a noncompact hyperbolic n-manifold whose volume is smaller than the volume of any compact hyperbolic n-manifold. For dimensions n≤ 4 and n = 6 this conjecture follows from the known results. In this paper we show that the conjecture is true for arithmetic hyperbolic n-manifolds of dimension n≥ 30. 2010 Mathematics Subject Classification:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2014
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2014.48050